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Abstract

Existing human pose estimation approaches often only
consider how to improve the model generalisation perfor-
mance, but putting aside the significant efficiency problem.
This leads to the development of heavy models with poor
scalability and cost-effectiveness in practical use. In this
work, we investigate the under-studied but practically crit-
ical pose model efficiency problem. To this end, we present
a new Fast Pose Distillation (FPD) model learning strat-
egy. Specifically, the FPD trains a lightweight pose neu-
ral network architecture capable of executing rapidly with
low computational cost by effectively transferring the pose
structure knowledge of a strong teacher. Extensive evalua-
tions demonstrate the advantages of our FPD method over a
broad range of state-of-the-art pose estimation approaches
in terms of model cost-effectiveness on the standard bench-
mark datasets, MPII Human Pose and Leeds Sports Pose.

1. Introduction
Human pose estimation has gained remarkable progress

from the rapid development of various deep CNN mod-
els [27, 8, 10]. This is because deep neural networks are
strong at approximating complex and non-linear mapping
functions from arbitrary person images to the joint locations
even at the presence of unconstrained human body appear-
ance, viewing conditions and background noises.

Nevertheless, the model performance advantages come
with the cost of training and deploying resource-intensive
networks with large depth and width. This causes inefficient
model inference, requiring per-image computing cost at
tens of FLoating point OPerations (FLOPs) therefore poor
scalability particularly on resource-limited devices such as
smart phones and robots. There is a recent attempt that bina-
rises the network parameters for model execution speedup

[7], which however suffers significantly weak model gener-
alisation capacity.

In this study, we consider the problem of improving
the pose estimation efficiency without model performance
degradation but preserving comparable accuracy results.
We observe that the basic CNN building blocks for state-of-
the-art human pose networks such as Hourglass [16] are not
cost-effective in establishing small networks due to a high
number of channels per layer and being more difficult to
train. To overcome these barriers, we design a lightweight
variant of Hourglass network and propose a more effective
training method of small pose networks in a knowledge dis-
tillation fashion [13]. We call the proposed method Fast
Pose Distillation (FPD). Compared with the top-performing
alternative pose approaches [29, 10], the proposed FPD ap-
proach enables much faster and more cost-effective model
inference with extremely smaller model size while simulta-
neously reaching the same level of human pose prediction
performance.

We summarise our contributions in follows:

(i) We investigate the under-studied human pose model
efficiency problem, opposite to the existing attempts
mostly focusing on improving the accuracy perfor-
mance alone at high costs of model inference at de-
ployment. This is a critical problem to be addressed
for scaling up the existing deep pose estimation meth-
ods to real applications.

(ii) We propose a Fast Pose Distillation (FPD) model
training method enabling to more effectively train ex-
tremely small human pose CNN networks. This is
based on an idea of knowledge distillation that have
been successfully exploited in inducing object image
categorisation deep models. In particular, we de-
rive a pose knowledge distillation learning objective to
transfer the latent knowledge from a pre-trained larger
teacher model to a tiny target pose model (to be de-
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ployed in test time). This aims to pursue the best model
performance given very limited computational budgets
using only a small fraction (less than 20%) of cost re-
quired by similarly strong alternatives.

(iii) We design a lightweight Hourglass network capable of
constructing more cost-effective pose estimation CNN
models while retaining sufficient learning capacity for
allowing satisfactory accuracy rates. This is achieved
by extensively examining the redundancy degree of ex-
isting state-of-the-art pose CNN architecture designs.

In the evaluations, we have conducted extensive empir-
ical comparisons to validate the efficacy and superiority of
the proposed FPD method over a wide variety of state-of-
the-art human pose estimation approaches in the balance of
model inference efficiency and prediction performance on
two commonly adopted benchmark datasets, MPII Human
Pose [1] and Leeds Sports Pose [15].

2. Related Work
Human Pose Estimation The past five years have wit-

nessed a huge progress of human pose estimation in the
deep learning regime [27, 25, 6, 28, 16, 11, 29, 17, 19]. De-
spite the clear performance increases, these prior works fo-
cus only on improving the pose estimation accuracy by us-
ing complex and computationally expensive models whilst
largely ignoring the model inference cost issue. This sig-
nificantly restricts their scalability and deployability in real-
world applications particularly with very limited computing
budgets available.

In the literature, there are a few recent works designed
to improve model efficiency. For example, Bulat and Tz-
imiropoulos built parameter binarised CNN models to ac-
commodate resource-limited platforms [7]. But this method
leads to dramatic performance drop therefore not satisfied
for reliable utilisation. In most cases, high accuracy rates
are required. Rafi et al. exploited good general purpose
practices to improve model efficiency without presenting a
novel algorithm [21]. Further, this method does not pro-
vide quantitative evaluation on the trade-off between model
efficiency and effectiveness.

In contrast to these previous methods, we systematically
study the pose estimation efficiency problem under the con-
dition of preserving the model performance rate so that the
resulted model is more usable and reliable in real-world ap-
plication scenarios.

Knowledge Distillation The objective of knowledge
distillation is concerned with information transfer between
different neural networks with distinct capacities [5, 13, 3].
For instance, Hinton et al. successfully employed a well
trained large network to help to train a small network [13].
The rationale is an exploitation of extra supervision from

a teacher model, represented in form of class probabilities
[13], feature representations [3], or an inter-layer flow [32].
This principle has also been recently applied to accelerate
the model training process of large scale distributed neu-
ral networks [2]. Besides, knowledge distillation has been
exploited to distil easy-to-train large networks into harder-
to-train small networks [22].

While these past works above transfer category-level dis-
criminative knowledge, our method transfers richer struc-
tured information of dense joint confidence maps. A more
similar work is the latest radio signals based pose model that
also adopts the idea of knowledge distillation [34]. How-
ever, this method targets at using wireless sensors to tackle
the occlusion problem, rather than the model efficiency is-
sue as we confider here.

3. Fast Human Pose Estimation
Human pose estimation aims to predict the spatial coor-

dinates of human joints in a given image. To train a model
in a supervised manner, we often have access to a training
dataset {Ii,Gi}Ni=1 of N person images each labelled with
K joints defined in the image space as:

Gi = {gi
1, .., g

i
K} ∈ RK×2, (1)

where H and W denotes the image height and width, re-
spectively. Generally, this is a regression problem at the
imagery pixel level.

Objective Loss Function For pose model training, we
often use the Mean-Squared Error (MSE) based loss func-
tion [26, 16]. To represent the ground-truth joint labels,
we generate a confidence map mk for each single joint k
(k ∈ {1, · · · ,K}) by centring a Gaussian kernel around the
labelled position zk=(xk, yk).

More specifically, a Gaussian confidence map mk for
the k-th joint label is written as:

mk(x, y) =
1

2πσ2
exp

(−[(x− xk)2 + (y − yk)]2

2σ2

)
(2)

where (x, y) specifies a pixel location and the hyper-
parameter σ denotes a pre-fixed spatial variance. The MSE
loss function is then obtained as:

Lmse =
1

K

K∑
k=1

‖mk − m̂k‖22 (3)

where m̂k refers to the predicted confidence map for the
k-th joint. The standard SGD algorithm can then be used
to optimise a deep CNN pose model by back-propagating
MSE errors on training data in a mini-batch incrementally.

Existing pose methods rely heavily on large deep neural
networks for maximising the model performance, whilst ne-
glecting the inference efficiency. We address this limitation
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Figure 1. An overview of the proposed Fast Pose Distillation model learning strategy. To establish a highly cost-effective human pose
estimation model, We need to build a compact backbone such as (a) a lightweight Hourglass network. To more effectively train a small
target network, we adopt the principle of knowledge distillation in the pose estimation context. This requires to (b) pre-train a strong
teacher pose model, such as the state-of-the-art Hourglass network or other existing alternatives. The teacher model is used to provide
extra supervision guidance in the (c) pose knowledge distillation procedure via the proposed mimicry loss function. At test time, the small
target pose model enables a fast and cost-effective deployment. The computationally expensive teacher model is abandoned finally, since
its discriminative knowledge transferred already into the target model therefore used in deployment (rather than wasted).

for higher scalability by establishing lightweight CNN ar-
chitectures and proposing an effective model learning strat-
egy detailed below.

3.1. Compact Pose Network Architecture

Human pose CNN models typically consist of multi-
ple repeated building blocks with the identical structure
[8, 28, 16, 11, 29, 17, 19]. Among these, Hourglass is one
of the most common building block units [16]. However,
we observe that existing designs are not cost-effective, due
to deploying a large number of both channels and blocks
in the entire architecture therefore leading to a suboptimal
trade-off between the representation capability and the com-
putational cost. For example, [16] suggested a CNN archi-
tecture of 8 Hourglass stages each having 9 Residual blocks
with 256 channels within every layer.

We therefore want to minimise the expense of exist-
ing CNN architectures for enabling faster model inference.
With careful empirical examination, we surprisingly re-
vealed that a half number of stages (i.e. 4 Hourglass mod-
ules) suffice to achieve over 95% model generalisation ca-
pacity on the large scale MPII benchmark. Moreover, the
per-layer channels are also found highly redundant and re-
ducing a half number (128) only results in less than 1%
performance drop (Table 7). Based on these analysis, we
construct a very light CNN architecture for pose estimation
with only one sixth computational cost of the original de-
sign. See Table 1 and Figure 1 for the target CNN architec-
ture specifications.

Remarks Whilst it is attractive to deploy tiny pose net-
works that run cheaply and fast, it is empirically non-trivial
to train them although theoretically shallow networks have
the similar representation capacities to approximate the tar-

Stage Building Block
1, 2, 3, 4 Hourglass with 128 channels per layer

Table 1. The structure of a small pose CNN model.

get functions as learned by deeper counterparts [3, 23]. A
similar problem has been occurred and investigated in ob-
ject image classification through the knowledge distillation
strategy, i.e. let the target small network mimic the predic-
tion of a larger teacher model [13]. However, it remains
unclear how well such a similar method will work in ad-
dressing structured human pose estimation in dense pixel
space. To answer this question, in the following we present
a pose structure knowledge distillation method.

3.2. Supervision Enhancement by Pose Distillation

Model Training Pipeline We adopt the generic model
training strategy of knowledge distillation:

1. We first train a large teacher pose model. In our ex-
periments, by default we select the original Hourglass
model [16] due to its clean design and easy model
training. Other stronger models can be considered
without any restrictions.

2. We then train a target student model with the assistance
of knowledge learned by the teacher model. Knowl-
edge distillation happens in this step. The structure of
the student model is presented in Table 1.

An overview of the whole training procedure is depicted
in Figure 1. The key to distilling knowledge is to design a
proper mimicry loss function that is able to effectively ex-
tract and transfer the teacher’s knowledge to the training of



the student model. The previous distillation function is de-
signed for single-label based softmax cross-entropy loss in
the context of object categorisation [3, 13] and unsuitable to
transfer the structured pose knowledge in 2D image space.

To address this aforementioned problem, we design a
joint confidence map dedicated pose distillation loss func-
tion formulated as:

Lpd =
1

K

K∑
k=1

‖ms
k −mt

k‖22 (4)

where ms
k and mt

k specify the confidence maps for the k-
th joint predicted by the pre-trained teacher model and the
in-training student target model, respectively. We choose
the MSE function as the distillation quantity to measure the
divergence between the student and teacher models in or-
der to maximise the comparability with the pose supervised
learning loss (Eqn (3)).

Overall Loss Function We formulate the overall FPD
loss function for pose structure knowledge distillation dur-
ing training as:

Lfpd = αLpd + (1− α)Lmse (5)

where α is the balancing weight between the two loss terms,
estimated by cross-validation. As such, the target network
learns both to predict the labelled ground-truth annotations
of training samples by Lmse and to match the prediction
structure of the stronger teacher model by Lpd.

Further Remarks Why does the proposed pose distil-
lation loss function probably help to train a more gener-
alisable target model, as compared to training only on the
labelled data? A number of reason may explain this in the
context of pose estimation.

1. The body joint labels are likely to be erroneous due to
the high difficulty of locating the true positions in the
manual annotation process. In such cases, the teacher
model may be able to mitigate some errors through sta-
tistical learning and reasoning therefore reducing the
misleading effect of wrongly labelled training samples
(Figure 3 Row (A)).

2. Given difficult training cases say with confus-
ing/cluttered background and random occlusion situ-
ations, the teacher prediction may provide softened
learning tasks by explained away these hard samples
with model inference (Figure 3 Row (B)).

3. The teacher model may provide more complete joint
labels than the original annotation therefore not only
providing additional more accurate supervision but
also mitigating the misleading of missing joint labels
(Figure 3 Row (C)).

4. Learning to match the ground-truth confidence map
can be harder in comparison to aligning the teacher’s
prediction. This is because the teacher model has
spread some reasoning uncertainty for each training
sample either hard or easy to process.

5. On the other hand, the teacher’s confidence map en-
codes the abstract knowledge learned from the entire
training dataset in advance, which may be beneficial
to be considered in learning every individual training
sample during knowledge distillation.

In summary, the proposed model is capable of handling
wrong pose joint annotations, e.g. when the pre-trained
teacher predicts more accurate joints than manual wrong
and missing labels. Due to a joint use of the ground-truth
labels and the teacher model’s prediction, our model is tol-
erant to either error but not co-occurring ones. This allevi-
ates the harm of label errors in the training data, in contrast
to existing methods that often blindly trust all given labels.

3.3. Model Training and Deployment

The proposed FPD model training method consists of
two stages: (i) We train a teacher pose model by the con-
ventional MSE loss (Eqn (3)), and (ii) train a target student
model by the proposed loss (Eqn (5)), with the knowledge
distillation from the teacher model to the target model be-
ing conducted in each mini-batch and throughout the entire
training process. At test time, we only use the small tar-
get model for efficient and cost-effective deployment whilst
throwing away the heavy teacher network. The target model
already extracts the teacher’s knowledge.

4. Experiments
4.1. Experiment Setup

Datasets We utilised two human pose benchmark
datasets, MPII [1] and Leeds Sports Pose (LSP) [15]. The
MPII dataset is collected from YouTube videos with a wide
range of human activities and events. It has 25K scene im-
ages and 40K annotated persons (29K for training and 11K
for test). Each person has 16 labelled body joints. We
adopted the standard train/valid/test data split [25]. Fol-
lowing [26], we randomly sampled 3K samples from the
training set for model validation.

The LSP benchmark contains natural person images
from many different sports scenes. Its extended version pro-
vides 11K training samples and 1K test samples. Each per-
son in LSP has 14 labelled joints.

Performance Metrics We used the standard Percentage
of Correct Keypoints (PCK) measurement that quantifies
the fraction of correct predictions within an error thresh-
old τ [31]. Specifically, the quantity τ is normalised against



Method Head Sho. Elbo. Wri. Hip Knee Ank. Mean AUC # Param Deployment Cost
Rafi et al., BMVC’16[21] 97.2 93.9 86.4 81.3 86.8 80.6 73.4 86.3 57.3 56M 28G

Belagiannis&Zisserman, FG’17[4] 97.7 95.0 88.2 83.0 87.9 82.6 78.4 88.1 58.8 17M 95G
Insafutdinov et al., ECCV’16[14] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5 60.8 66M 286G

Wei et al., CVPR’16[28] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5 61.4 31M 351G
Bulat&Tzimiropoulos, ECCV’16[6] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7 59.6 76M 67G

Newell et al., ECCV’16[16] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9 62.9 26M 55G
Ning et al., TMM’17[18] 98.1 96.3 92.2 87.8 90.6 87.6 82.7 91.2 63.6 74M 124G
Chu et al., CVPR’17[11] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5 63.8 58M 128G
Peng et al., CVPR’18[19] 98.1 96.6 92.5 88.4 90.7 87.7 83.5 91.5 - 26M 55G
Yang et al., ICCV’17[29] 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0 64.2 28M 46G
Nie et al., CVPR’18[17] 98.6 96.9 93.0 89.1 91.7 89.0 86.2 92.4 65.9 26M 63G

Sekii, ECCV18[24] - - - - - - - 88.1 - 16M 6G
FPD 98.3 96.4 91.5 87.4 90.9 87.1 83.7 91.1 63.5 3M 9G

Table 2. PCKh@0.5 and AUC (%) rates on the MPII test dataset. M/G/P: 106/109/1015.

Method Head Sho. Elbo. Wri. Hip Knee Ank. Mean AUC # Param Deployment Cost
Tompson et al., NIPS’14[26] 90.6 79.2 67.9 63.4 69.5 71.0 64.2 72.3 47.3 - -

Fan et al., CVPR’15[12] 92.4 75.2 65.3 64.0 75.7 68.3 70.4 73.0 43.2 - -
Carreira et al., CVPR’16[8] 90.5 81.8 65.8 59.8 81.6 70.6 62.0 73.1 41.5 - -
Chen&Yuille, NIPS’14[9] 91.8 78.2 71.8 65.5 73.3 70.2 63.4 73.4 40.1 - -
Yang et al., CVPR’16[30] 90.6 78.1 73.8 68.8 74.8 69.9 58.9 73.6 39.3 - -
Rafi et al., BMVC’16[21] 95.8 86.2 79.3 75.0 86.6 83.8 79.8 83.8 56.9 56M 28G
Yu et al., ECCV’16[33] 87.2 88.2 82.4 76.3 91.4 85.8 78.7 84.3 55.2 - -

Peng et al., CVPR’18[19] 98.6 95.3 92.8 90.0 94.8 95.3 94.5 94.5 - 26M 55G
FPD 97.3 92.3 86.8 84.2 91.9 92.2 90.9 90.8 64.3 3M 9G

Table 3. PCK@0.2 and AUC (%) rates on the LSP test dataset. M/G/P: 106/109/1015.

the size of either torso (τ = 0.2 for LSP, i.e. PCK@0.2)
or head (τ =0.5 for MPII, i.e. PCKh@0.5). We measured
each individual joint respectively and took their average as
an overall metric. Using different τ values, we yielded a
PCK curve. Therefore, the Area Under Curve (AUC) can
be obtained as a holistic measurement across different de-
cision thresholds. To measure the model efficiency both in
training and test, we used the FLOPs.

Training Details We implemented all the following ex-
periments in Torch. We cropped all the training and test
images according to the provided positions and scales, and
resized them to 256×256 in pixels. As typical, random
scaling (0.75-1.25), rotating (±30 degrees) and horizontal
flipping were performed to augment the training data. We
adopted the RMSProp optimisation algorithm. We set the
learning rate to 2.5×10−4, the mini-batch size to 4, and
the epoch number to 130 and 70 for MPII and LSP bench-
marks, respectively. For the network architecture, we used
the original Hourglass as the teacher model and the cus-
tomised Hourglass with less depth and width (Table 1) as

the target model.

4.2. Comparisons to State-Of-The-Arts

We evaluated the proposed FPD method by extensively
comparing against recent human pose estimation deep
methods on MPII and LSP.

Results on MPII Table 2 compares the PCKh@0.5 ac-
curacy results of state-of-the-art methods and the proposed
FPD on the test dataset of MPII. It is clearly observed that
the proposed FPD model is significantly efficient and com-
pact therefore achieving a much cheaper deployment cost.
Importantly, this advantage is obtained without clearly com-
promising the model generalisation capability, e.g. achiev-
ing as high as 91.1%.

Specifically, compared with the best performer [17], the
FPD model only requires 14.3% (9/63) computational cost
but gaining 96.4% (63.5/65.9) performance in mean PCKh
accuracy. This leads to a 6.7%× (96.4/14.3) cost-effective
advantage. When compared to the most efficient alterna-
tive competitor [21], our model is 2.9× (26/9) more effi-
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Figure 2. Example of human pose estimation on LSP and MPII.

cient whilst simultaneously achieving a mean PCKh gain
of 4.8% (91.1-86.3). These evidences clearly suggest the
cost-effectiveness advantages of our method over other al-
ternative approaches.

In pose estimation, an improvement of 0.8% indicates a
significant gain particularly on the challenging MPII with
varying poses against cluttered background. This boost
is bigger than other state-of-the-art gains, e.g. +0.3% in
91.2% [18] vs 90.9% [16]; further +0.3% in 91.5% [20].

More specifically, given all 163,814 test joints, each 0.1%
gain means correcting 163 joints.

Results on LSP Table 3 compares the PCK@0.2 rates
of our FPD model and existing methods with top reported
performances on the LSP test data. Compared to MPII, this
benchmark has been less evaluated by deep learning mod-
els, partly due to a smaller size of training data. Overall, we
observed the similar comparisons. For example, our FPD
runs more efficiently than the most competitive alternative



[21] and consumes much less training energy, in addition to
achieving the best pose prediction accuracy rate among all
compared methods.

Qualitative Examination To provide visual test, Figure
2 shows qualitative pose estimation evaluations on LSP and
MPII. It is observed that such a small FPD model can still
achieve reliable and robust pose estimation in arbitrary in-
the-wild images with various background clutters, different
human poses and viewing conditions.

4.3. Ablation Study

We carried out detailed component analysis and discus-
sion on the validation set of MPII.

Effect of pose knowledge distillation We tested the
effect of using our pose knowledge distillation on the
lightweight Hourglass network. In contrast to all other
methods, the model [20] additionally benefits from an aux-
iliary dataset MPII in model training. Table 5 shows that
teacher knowledge transfer brings in 0.8% (90.9-90.1) mean
PCKh accuracy boost. This suggests that the generic prin-
ciple of knowledge distillation is also effective in the struc-
tured pose estimation context, beyond object categorisation.

To further validate how on earth this happens, we visu-
alise three pose structure transfer examples in Figure 3. It
is shown that the proposed mimicry loss against the teacher
prediction is likely to pose extra information in cases of er-
ror labelling, hard training images, and missing annotation.

Parameter analysis of loss balance We evaluated the
balance importance between the conventional MSE loss and
the proposed pose knowledge distillation loss, as controlled
by α in Eqn (5). Table 6 shows that equal importance (when
α= 0.5) is the optimal setting. This suggests that the two
loss terms are similarly significant with the same numerical
scale. On the other hand, we found that this parameter set-
ting is not sensitive with a wide range of satisfactory values.
This indicates that the teacher signal is not far away from
the ground-truth labels (see Figure 3 Column (4)), possibly
providing an alternative supervision as a replacement of the
original joint confidence map labels.

Cost-effectiveness analysis of Hourglass We exten-
sively examined the architecture design of the state-of-the-
art Hourglass neural network model [16] in terms of cost-
effectiveness. To this end, we tested two dimensions in
design: depth (the layer number) and width (the channel
number). Interestingly, we revealed in Table 7 that re-
moving half stages (layers) and half channels only leads
to quite limited performance degradation. This indicates
that the original Hourglass design is highly redundant with
poor cost-effectiveness. However, this is largely ignored in
previous works due to their typical focus on pursuing the
model accuracy performance alone whilst overlooking the

important model efficiency problem. This series of CNN
architecture examinations helps us to properly formulate a
lightweight pose CNN architecture with only 16% (9/55)
computational cost but obtaining 98% (90.1/91.9) model
performance as compared to the state-of-the-art design, lay-
ing a good foundation towards building compact yet strong
human pose deep models.

Pose distillation loss function We finally evaluated the
effect of loss function choice for pose knowledge distilla-
tion. To that end, we further tested a Cross-Entropy mea-
surement based loss. Specifically, we first normalise the en-
tire confidence map so that the sum of all pixel confidence
scores is equal to 1, i.e. L1 normalisation. We then measure
the divergence between the predicted and ground-truth con-
fidence maps using the Cross-Entropy criterion. The results
in Table 8 show that the MSE is a better choice in compar-
ison to Cross-Entropy. The plausible reason is that MSE
is also the formulation of the conventional supervision loss
(Eqn (3)) therefore more compatible.

FPD generalisation evaluation Besides using the state-
of-the-art Hourglass as the backbone network, we also
tested the more recent model [29] when integrated into
the proposed FPD framework. In particular, we adopted
the original network as the teacher model and constructed
a lightweight variant as the student (target) model. The
lightweight model was constructed similarly as in Table 1
because it is based on the Hourglass design too: reducing
the number of stages to 4 and the number of channels in
each module to 128. The results in Table 4 show that our
FPD approach achieves 1.0% mean PCKh@0.5 gain, simi-
lar to the Hourglass case. This suggests the good generali-
sation capability of the proposed approach in yielding cost-
effective pose estimation deep models.

5. Conclusion
In this work, we present a novel Fast Pose Distillation

(FPD) learning strategy. In contrast to most existing hu-
man pose estimation methods, the FPD aims to address
the under-studied and practically significant model cost-
effectiveness quality in order to scale up pose estimation
deployment in reality. This is made possible by developing
a lightweight pose CNN architecture and designing an ef-
fective pose structure knowledge distillation method. Com-
pared with existing model compression techniques such as
network binarisation, the proposed method achieves highly
efficient pose models without accuracy performance com-
promise. We have carried out extensive comparative eval-
uations on two human pose benchmarking datasets with
the results suggesting the superiority of our FPD approach
in comparison to a wide spectrum of state-of-the-art alter-
native methods. Moreover, we have also conducted a se-
quence of ablation study on model components to provide



Figure 3. Pose estimation examples on MPII by the proposed FPD model. Column (1): The input images. Column (2): Ground-truth joint
confidence maps. Column (3): Joint confidence maps predicted by the teacher model. Column (4): The difference between ground-truth
and teacher’s confidence map. Each row represents a type of pose knowledge transfer. Row (A): Error labelling of the right leg ankle in the
“ground-truth” annotations, which is corrected by the teacher model. Row (B): A softened teacher confidence map with larger uncertainty
than the ground-truth due to the highly complex human posture. Row (C): Missing joint labels are discovered by the teacher model.

FPD Head Sho. Elbo. Wri. Hip Knee Ank. Mean AUC
7 97.4 96.0 90.2 85.8 88.2 84.3 80.6 89.4 61.4
3 97.5 96.3 91.4 87.3 89.4 85.6 82.0 90.4 62.4

Table 4. Generalisation evaluation of the proposed FPD approach. Metric: Mean PCKh@0.5 and AUC.

Pose Distillation Mean AUC
7 90.1 62.4
3 90.9 63.3

Table 5. Effect of the proposed pose knowledge distillation. Met-
ric: Mean PCKh@0.5 and AUC (%).

α 0 0.05 0.1 0.5 0.95 0.99
Mean 90.1 90.8 90.8 90.9 90.7 90.7
AUC 62.4 63.2 63.2 63.3 63.0 63.0

Table 6. Performance analysis of the learning importance param-
eter of pose distillation. Metric: Mean PCKh@0.5 and AUC (%).

detailed analysis and insight about the gains in model cost-
effectiveness.

References
[1] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d

human pose estimation: New benchmark and state of the art
analysis. In IEEE Conference on Computer Vision and Pat-
tern Recognition, 2014. 2, 4

[2] R. Anil, G. Pereyra, A. Passos, R. Ormandi, G. E. Dahl, and
G. E. Hinton. Large scale distributed neural network training
through online distillation. In International Conference on
Learning Representations, 2018. 2

[3] J. Ba and R. Caruana. Do deep nets really need to be deep? In
Advances in Neural Information Processing Systems, 2014.
2, 3, 4

[4] V. Belagiannis and A. Zisserman. Recurrent human pose
estimation. 2017. 5

[5] C. Bucilua, R. Caruana, and A. Niculescu-Mizil. Model
compression. In ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2006. 2

[6] A. Bulat and G. Tzimiropoulos. Human pose estimation via
convolutional part heatmap regression. In European Confer-
ence on Computer Vision, 2016. 2, 5

[7] A. Bulat and G. Tzimiropoulos. Binarized convolutional
landmark localizers for human pose estimation and face
alignment with limited resources. In IEEE International
Conference on Computer Vision, 2017. 1, 2

[8] J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik. Human
pose estimation with iterative error feedback. In IEEE Con-
ference on Computer Vision and Pattern Recognition, 2016.
1, 3, 5

[9] X. Chen and A. L. Yuille. Articulated pose estimation by a
graphical model with image dependent pairwise relations. In
Advances in Neural Information Processing Systems, 2014.
5

[10] Y. Chen, C. Shen, X.-S. Wei, L. Liu, and J. Yang. Adver-
sarial posenet: A structure-aware convolutional network for
human pose estimation. In IEEE International Conference
on Computer Vision, 2017. 1



# Stage # Channel Mean AUC # Param Deployment Cost
8 256 91.9 63.7 26M 55G
4 256 91.4 63.9 13M 30G
2 256 90.5 63.0 7M 17G
1 256 86.4 58.3 3M 10G
4 256 91.4 63.9 13M 30G
4 128 90.1 62.4 3M 9G
4 64 87.9 59.5 0.95M 4.5G
4 32 83.4 54.9 0.34M 3.1G

Table 7. Cost-effectiveness analysis of the Hourglass model. Metric: PCKh@0.5 and AUC. M/G/P: 106/109/1015.

Loss Function Head Sho. Elbo. Wri. Hip Knee Ank. Mean AUC
MSE 97.7 96.4 91.8 87.6 89.7 86.6 83.9 90.9 63.3

Cross-Entropy 97.6 96.2 91.5 87.6 89.0 86.5 83.6 90.7 63.0

Table 8. Pose knowledge distillation by different types of loss function. Metric: Mean PCKh@0.5 and AUC.

[11] X. Chu, W. Yang, W. Ouyang, C. Ma, A. L. Yuille, and
X. Wang. Multi-context attention for human pose estima-
tion. In IEEE Conference on Computer Vision and Pattern
Recognition, 2017. 2, 3, 5

[12] X. Fan, K. Zheng, Y. Lin, and S. Wang. Combining local
appearance and holistic view: Dual-source deep neural net-
works for human pose estimation. In IEEE Conference on
Computer Vision and Pattern Recognition, 2015. 5

[13] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge
in a neural network. arXiv, 2015. 1, 2, 3, 4

[14] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka,
and B. Schiele. Deepercut: A deeper, stronger, and faster
multi-person pose estimation model. European Conference
on Computer Vision, 2016. 5

[15] S. Johnson and M. Everingham. Clustered pose and nonlin-
ear appearance models for human pose estimation. In British
Machine Vision Conference, 2010. 2, 4

[16] A. Newell, K. Yang, and J. Deng. Stacked hourglass net-
works for human pose estimation. In European Conference
on Computer Vision, 2016. 1, 2, 3, 5, 6, 7

[17] X. Nie, J. Feng, Y. Zuo, and S. Yan. Human pose estima-
tion with parsing induced learner. In IEEE Conference on
Computer Vision and Pattern Recognition, 2018. 2, 3, 5

[18] G. Ning, Z. Zhang, and Z. He. Knowledge-guided deep frac-
tal neural networks for human pose estimation. IEEE Trans-
actions on Multimedia, PP(99):1–1, 2017. 5, 6

[19] X. Peng, Z. Tang, F. Yang, R. S. Feris, and D. Metaxas.
Jointly optimize data augmentation and network training:
Adversarial data augmentation in human pose estimation. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2018. 2, 3, 5

[20] X. Peng, Z. Tang, F. Yang, R. S. Feris, and D. Metaxas.
Jointly optimize data augmentation and network training:
Adversarial data augmentation in human pose estimation.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2226–2234, 2018. 6, 7

[21] U. Rafi, B. Leibe, J. Gall, and I. Kostrikov. An efficient
convolutional network for human pose estimation. In British
Machine Vision Conference, 2016. 2, 5, 7

[22] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,
and Y. Bengio. Fitnets: Hints for thin deep nets. arXiv e-
print, 2014. 2

[23] F. Seide, G. Li, and D. Yu. Conversational speech tran-
scription using context-dependent deep neural networks. In
Twelfth annual conference of the international speech com-
munication association, 2011. 3

[24] T. Sekii. Pose proposal networks. In The European Confer-
ence on Computer Vision (ECCV), September 2018. 5

[25] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler.
Efficient object localization using convolutional networks. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2015. 2, 4

[26] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint train-
ing of a convolutional network and a graphical model for
human pose estimation. In Advances in Neural Information
Processing Systems, 2014. 2, 4, 5

[27] A. Toshev and C. Szegedy. Deeppose: Human pose esti-
mation via deep neural networks. In IEEE Conference on
Computer Vision and Pattern Recognition, 2014. 1, 2

[28] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Con-
volutional pose machines. In IEEE Conference on Computer
Vision and Pattern Recognition, 2016. 2, 3, 5

[29] W. Yang, S. Li, W. Ouyang, H. Li, and X. Wang. Learning
feature pyramids for human pose estimation. In IEEE Inter-
national Conference on Computer Vision, 2017. 1, 2, 3, 5,
7

[30] W. Yang, W. Ouyang, H. Li, and X. Wang. End-to-end learn-
ing of deformable mixture of parts and deep convolutional
neural networks for human pose estimation. In IEEE Con-
ference on Computer Vision and Pattern Recognition, 2016.
5

[31] Y. Yang and D. Ramanan. Articulated human detection
with flexible mixtures of parts. IEEE Transactions on Pat-



tern Analysis and Machine Intelligence, 35(12):2878–2890,
2013. 4

[32] J. Yim, D. Joo, J. Bae, and J. Kim. A gift from knowl-
edge distillation: Fast optimization, network minimization
and transfer learning. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2017. 2

[33] X. Yu, F. Zhou, and M. Chandraker. Deep deformation net-
work for object landmark localization. In European Confer-
ence on Computer Vision, pages 52–70. Springer, 2016. 5

[34] M. Zhao, T. Li, M. Abu Alsheikh, Y. Tian, H. Zhao, A. Tor-
ralba, and D. Katabi. Through-wall human pose estimation
using radio signals. In IEEE Conference on Computer Vision
and Pattern Recognition, 2018. 2


